Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Neurobiol Dis ; 193: 106441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378122

ABSTRACT

Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aß) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aß, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Amyloid beta-Peptides/genetics , Caenorhabditis elegans/genetics , Tauopathies/genetics , Alzheimer Disease/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Profiling
2.
Neurology ; 102(3): e208060, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38175995

ABSTRACT

BACKGROUND AND OBJECTIVES: The aim of this study was to compare 2 large clinicopathologic cohorts of participants aged 90+ and to determine whether the association between neuropathologic burden and dementia in these older groups differs substantially from those seen in younger-old adults. METHODS: Autopsied participants from The 90+ Study and Adult Changes in Thought (ACT) Study community-based cohort studies were evaluated for dementia-associated neuropathologic changes. Associations between neuropathologic variables and dementia were assessed using logistic or linear regression, and the weighted population attributable fraction (PAF) per type of neuropathologic change was estimated. RESULTS: The 90+ Study participants (n = 414) were older (mean age at death = 97.7 years) and had higher amyloid/tau burden than ACT <90 (n = 418) (mean age at death = 83.5 years) and ACT 90+ (n = 401) (mean age at death = 94.2 years) participants. The ACT 90+ cohort had significantly higher rates of limbic-predominant age-related TDP-43 encephalopathy (LATE-NC), microvascular brain injury (µVBI), and total neuropathologic burden. Independent associations between individual neuropathologic lesions and odds of dementia were similar between all 3 groups, with the exception of µVBI, which was associated with increased dementia risk in the ACT <90 group only (odds ratio 1.5, 95% CI 1.2-1.8, p < 0.001). Weighted PAF scores indicated that eliminating µVBI, although more prevalent in ACT 90+ participants, would have little effect on dementia. Conversely, eliminating µVBI in ACT <90 could theoretically reduce dementia at a similar rate to that of AD neuropathologic change (weighted PAF = 6.1%, 95% CI 3.8-8.4, p = 0.001). Furthermore, reducing LATE-NC in The 90+ Study could potentially reduce dementia to a greater degree (weighted PAF = 5.1%, 95% CI 3.0-7.3, p = 0.001) than either ACT cohort (weighted PAFs = 1.69, 95% CI 0.4-2.7). DISCUSSION: Our results suggest that specific neuropathologic features may differ in their effect on dementia among nonagenarians and centenarians from cohorts with different selection criteria and study design. Furthermore, microvascular lesions seem to have a more significant effect on dementia in younger compared with older participants. The results from this study demonstrate that different populations may require distinct dementia interventions, underscoring the need for disease-specific biomarkers.


Subject(s)
Alzheimer Disease , Dementia , Nervous System Diseases , Aged, 80 and over , Humans , Alzheimer Disease/pathology , Brain/pathology , Centenarians , Nonagenarians , Dementia/epidemiology , Dementia/pathology , Nervous System Diseases/pathology
3.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37333251

ABSTRACT

We present open-source tools for 3D analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (i) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (ii) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite "FreeSurfer" ( https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools ).

4.
Article in English | MEDLINE | ID: mdl-38151325

ABSTRACT

Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.

5.
Brain Commun ; 5(6): fcad258, 2023.
Article in English | MEDLINE | ID: mdl-37953850

ABSTRACT

Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.

6.
Neurosci Insights ; 18: 26331055231201600, 2023.
Article in English | MEDLINE | ID: mdl-37810186

ABSTRACT

Studying proteomics data of the human brain could offer numerous insights into unraveling the signature of resilience to Alzheimer's disease. In our previous study with rigorous cohort selection criteria that excluded 4 common comorbidities, we harnessed multiple brain regions from 43 research participants with 12 of them displaying cognitive resilience to Alzheimer's disease. Based on the previous findings, this work focuses on 6 proteins out of the 33 differentially expressed proteins associated with resilience to Alzheimer's disease. These proteins are used to construct a decision tree classifier, enabling the differentiation of 3 groups: (i) healthy control, (ii) resilience to Alzheimer's disease, and (iii) Alzheimer's disease with dementia. Our analysis unveiled 2 important regional proteomic markers: Aß peptides in the hippocampus and PA1B3 in the inferior parietal lobule. These findings underscore the potential of using distinct regional proteomic markers as signatures in characterizing the resilience to Alzheimer's disease.

7.
Sci Rep ; 13(1): 13849, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620363

ABSTRACT

Comparing brain structure across species and regions enables key functional insights. Leveraging publicly available data from a novel mass cytometry-based method, synaptometry by time of flight (SynTOF), we applied an unsupervised machine learning approach to conduct a comparative study of presynapse molecular abundance across three species and three brain regions. We used neural networks and their attractive properties to model complex relationships among high dimensional data to develop a unified, unsupervised framework for comparing the profile of more than 4.5 million single presynapses among normal human, macaque, and mouse samples. An extensive validation showed the feasibility of performing cross-species comparison using SynTOF profiling. Integrative analysis of the abundance of 20 presynaptic proteins revealed near-complete separation between primates and mice involving synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. In addition, our analysis revealed a strong overlap between the presynaptic composition of human and macaque in the cerebral cortex and neostriatum. Our unique approach illuminates species- and region-specific variation in presynapse molecular composition.


Subject(s)
Brain , Synaptic Transmission , Humans , Animals , Mice , Cerebral Cortex , Lipid Metabolism , Macaca
8.
Nat Commun ; 14(1): 2747, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173305

ABSTRACT

Resilience to Alzheimer's disease is an uncommon combination of high disease burden without dementia that offers valuable insights into limiting clinical impact. Here we assessed 43 research participants meeting stringent criteria, 11 healthy controls, 12 resilience to Alzheimer's disease and 20 Alzheimer's disease with dementia and analyzed matched isocortical regions, hippocampus, and caudate nucleus by mass spectrometry-based proteomics. Of 7115 differentially expressed soluble proteins, lower isocortical and hippocampal soluble Aß levels is a significant feature of resilience when compared to healthy control and Alzheimer's disease dementia groups. Protein co-expression analysis reveals 181 densely-interacting proteins significantly associated with resilience that were enriched for actin filament-based processes, cellular detoxification, and wound healing in isocortex and hippocampus, further supported by four validation cohorts. Our results suggest that lowering soluble Aß concentration may suppress severe cognitive impairment along the Alzheimer's disease continuum. The molecular basis of resilience likely holds important therapeutic insights.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neocortex , Humans , Alzheimer Disease/metabolism , Proteomics , Brain/metabolism , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Neocortex/metabolism
9.
J Neuropathol Exp Neurol ; 82(7): 611-619, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37195467

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a dementia-related proteinopathy common in the elderly population. LATE-NC stages 2 or 3 are consistently associated with cognitive impairment. A condensed protocol (CP) for the assessment of Alzheimer disease neuropathologic change and other disorders associated with cognitive impairment, recommended sampling of small brain portions from specific neuroanatomic regions that were consolidated, resulting in significant cost reduction. Formal evaluation of the CP for LATE-NC staging was not previously performed. Here, we determined the ability of the CP to identify LATE-NC stages 2 or 3. Forty brains donated to the University of Washington BioRepository and Integrated Neuropathology laboratory with known LATE-NC status were resampled. Slides containing brain regions required for LATE-NC staging were immunostained for phospho-TDP-43 and reviewed by 6 neuropathologists blinded to original LATE-NC diagnosis. Overall group performance distinguishing between LATE-NC stages 0-1 and 2-3 was 85% (confidence interval [CI]: 75%-92%). We also used the CP to evaluate LATE-NC in a hospital autopsy cohort, in which LATE-NC was more common in individuals with a history of cognitive impairment, older age, and/or comorbid hippocampal sclerosis. This study shows that the CP can effectively discriminate higher stages of LATE-NC from low or no LATE-NC and that it can be successfully applied in clinical practice using a single tissue block and immunostain.


Subject(s)
Alzheimer Disease , TDP-43 Proteinopathies , Humans , Aged , Neuropathology , Alzheimer Disease/pathology , Brain/pathology , TDP-43 Proteinopathies/pathology , DNA-Binding Proteins/metabolism
10.
J Alzheimers Dis ; 93(3): 949-961, 2023.
Article in English | MEDLINE | ID: mdl-37125552

ABSTRACT

BACKGROUND: Prior studies into the association of head trauma with neuropathology have been limited by incomplete lifetime neurotrauma exposure characterization. OBJECTIVE: To investigate the neuropathological sequelae of traumatic brain injury (TBI) in an autopsy sample using three sources of TBI ascertainment, weighting findings to reflect associations in the larger, community-based cohort. METHODS: Self-reported head trauma with loss of consciousness (LOC) exposure was collected in biennial clinic visits from 780 older adults from the Adult Changes in Thought study who later died and donated their brain for research. Self-report data were supplemented with medical record abstraction, and, for 244 people, structured interviews on lifetime head trauma. Neuropathology outcomes included Braak stage, CERAD neuritic plaque density, Lewy body distribution, vascular pathology, hippocampal sclerosis, and cerebral/cortical atrophy. Exposures were TBI with or without LOC. Modified Poisson regressions adjusting for age, sex, education, and APOE ɛ4 genotype were weighted back to the full cohort of 5,546 participants. RESULTS: TBI with LOC was associated with the presence of cerebral cortical atrophy (Relative Risk 1.22, 95% CI 1.02, 1.42). None of the other outcomes was associated with TBI with or without LOC. CONCLUSION: TBI with LOC was associated with increased risk of cerebral cortical atrophy. Despite our enhanced TBI ascertainment, we found no association with the Alzheimer's disease-related neuropathologic outcomes among people who survived to at least age 65 without dementia. This suggests the pathophysiological processes underlying post-traumatic neurodegeneration are distinct from the hallmark pathologies of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Humans , Aged , Alzheimer Disease/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/pathology , Brain/pathology , Death , Unconsciousness/complications
11.
Lancet Healthy Longev ; 4(3): e115-e125, 2023 03.
Article in English | MEDLINE | ID: mdl-36870337

ABSTRACT

BACKGROUND: Population-based autopsy studies provide valuable insights into the causes of dementia but are limited by sample size and restriction to specific populations. Harmonisation across studies increases statistical power and allows meaningful comparisons between studies. We aimed to harmonise neuropathology measures across studies and assess the prevalence, correlation, and co-occurrence of neuropathologies in the ageing population. METHODS: We combined data from six community-based autopsy cohorts in the US and the UK in a coordinated cross-sectional analysis. Among all decedents aged 80 years or older, we assessed 12 neuropathologies known to be associated with dementia: arteriolosclerosis, atherosclerosis, macroinfarcts, microinfarcts, lacunes, cerebral amyloid angiopathy, Braak neurofibrillary tangle stage, Consortium to Establish a Registry for Alzheimer's disease (CERAD) diffuse plaque score, CERAD neuritic plaque score, hippocampal sclerosis, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and Lewy body pathology. We divided measures into three groups describing level of confidence (low, moderate, and high) in harmonisation. We described the prevalence, correlations, and co-occurrence of neuropathologies. FINDINGS: The cohorts included 4354 decedents aged 80 years or older with autopsy data. All cohorts included more women than men, with the exception of one study that only included men, and all cohorts included decedents at older ages (range of mean age at death across cohorts 88·0-91·6 years). Measures of Alzheimer's disease neuropathological change, Braak stage and CERAD scores, were in the high confidence category, whereas measures of vascular neuropathologies were in the low (arterioloscerosis, atherosclerosis, cerebral amyloid angiopathy, and lacunes) or moderate (macroinfarcts and microinfarcts) categories. Neuropathology prevalence and co-occurrence was high (2443 [91%] of 2695 participants had more than one of six key neuropathologies and 1106 [41%] of 2695 had three or more). Co-occurrence was strongly but not deterministically associated with dementia status. Vascular and Alzheimer's disease features clustered separately in correlation analyses, and LATE-NC had moderate associations with Alzheimer's disease measures (eg, Braak stage ρ=0·31 [95% CI 0·20-0·42]). INTERPRETATION: Higher variability and more inconsistency in the measurement of vascular neuropathologies compared with the measurement of Alzheimer's disease neuropathological change suggests the development of new frameworks for the measurement of vascular neuropathologies might be helpful. Results highlight the complexity and multi-morbidity of the brain pathologies that underlie dementia in older adults and suggest that prevention efforts and treatments should be multifaceted. FUNDING: Gates Ventures.


Subject(s)
Alzheimer Disease , Atherosclerosis , Cerebral Amyloid Angiopathy , Limbic Encephalitis , Male , Female , Humans , Aged , Aged, 80 and over , Prevalence , Autopsy , Cross-Sectional Studies
12.
Brain ; 146(8): 3206-3220, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36732296

ABSTRACT

Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Tauopathies , Humans , Mice , Animals , tau Proteins/metabolism , Alzheimer Disease/pathology , RNA/metabolism , Neurodegenerative Diseases/pathology , Detergents/metabolism , Polymerization , Tauopathies/pathology , Brain/pathology , RNA, Messenger/metabolism , Caenorhabditis elegans/metabolism , Microtubules/metabolism , Poly(A)-Binding Protein I/metabolism
13.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Article in English | MEDLINE | ID: mdl-36512061

ABSTRACT

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics
14.
Methods Mol Biol ; 2561: 3-30, 2023.
Article in English | MEDLINE | ID: mdl-36399262

ABSTRACT

Human brain tissue has long been a critical resource for neuroanatomy and neuropathology, but with the advent of advanced imaging and molecular sequencing techniques, it has become possible to use human brain tissue to study, in great detail, the structural, molecular, and even functional underpinnings of human brain disease. In the century following the first description of Alzheimer's disease (AD), numerous technological advances applied to human tissue have enabled novel diagnostic approaches using diverse physical and molecular biomarkers, and many drug therapies have been tested in clinical trials (Schachter and Davis, Dialogues Clin Neurosci 2:91-100, 2000). The methods for brain procurement and tissue stabilization have remained somewhat consistently focused on formalin fixation and freezing. Although these methods have enabled research protocols of multiple modalities, new, more advanced technologies demand improved methodologies for the procurement, characterization, stabilization, and preparation of both normal and diseased human brain tissues. Here, we describe our current protocols for the procurement and characterization of fixed brain tissue, to enable systematic and precisely targeted diagnoses, and describe the novel, quantitative molecular, and neuroanatomical studies that broadly expand the use of formalin-fixed, paraffin-embedded (FFPE) tissue that will further our understanding of the mechanisms underlying human neuropathologies.


Subject(s)
Formaldehyde , Specimen Handling , Humans , Paraffin Embedding/methods , Tissue Fixation/methods , Formaldehyde/chemistry , Brain
15.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Article in English | MEDLINE | ID: mdl-35697880

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Nervous System Diseases , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid , Autopsy , DNA-Binding Proteins , Humans , Male , Plaque, Amyloid/pathology
16.
Alzheimers Dement ; 18(11): 2308-2326, 2022 11.
Article in English | MEDLINE | ID: mdl-35758526

ABSTRACT

Hypertension is an important risk factor for Alzheimer's disease (AD) and all-cause dementia. The mechanisms underlying this association are unclear. Hypertension may be associated with AD neuropathological changes (ADNC), but reports are sparse and inconsistent. This systematic review included 15 autopsy studies (n = 5879) from observational cohorts. Studies were highly heterogeneous regarding populations, follow-up duration, hypertension operationalization, neuropathological methods, and statistical analyses. Hypertension seems associated with higher plaque and tangle burden, but results are inconsistent. Four studies (n = 3993/5879; 68%), reported clear associations between hypertension and ADNC. Another four suggested that antihypertensive medication may protect against ADNC. Larger studies with longer follow-up reported the strongest relationships. Our findings suggest a positive association between hypertension and ADNC, but effects may be modest, and possibly attenuate with higher hypertension age and antihypertensive medication use. Investigating interactions among plaques, tangles, cerebrovascular pathology, and dementia may be key in better understanding hypertension's role in dementia development.


Subject(s)
Alzheimer Disease , Hypertension , Humans , Alzheimer Disease/pathology , Neurofibrillary Tangles/pathology , Autopsy , Antihypertensive Agents/therapeutic use , Plaque, Amyloid/pathology , Hypertension/complications , Brain/pathology
17.
Neurol Genet ; 8(3): e669, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35620141

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most prominent motor neuron disease in humans. Its etiology consists of progressive motor neuron degeneration resulting in a rapid decline in motor function starting in the limbs or bulbar muscles and eventually fatally impairing central organs most typically resulting in loss of respiration. Pathogenic variants in 4 main genes, SOD1, TARDBP, FUS, and C9orf72, have been well characterized as causative for more than a decade now. However, these only account for a small fraction of all ALS cases. In this review, we highlight many additional variants that appear to be causative or confer increased risk for ALS, and we reflect on the technologies that have led to these discoveries. Next, we call attention to new challenges and opportunities for ALS and suggest next steps to increase our understanding of ALS genetics. Finally, we conclude with a synopsis of gene therapy paradigms and how increased understanding of ALS genetics can lead us to developing effective treatments. Ultimately, a consolidated update of the field can provide a launching point for researchers and clinicians to improve our search for ALS-related genes, defining pathogenic mechanisms, form diagnostics, and develop therapies.

18.
Dis Model Mech ; 15(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35178571

ABSTRACT

Although amyloid ß (Aß) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aß, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aß, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aß neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Humans , Poly(A)-Binding Proteins , tau Proteins/metabolism
19.
Glia ; 70(2): 239-255, 2022 02.
Article in English | MEDLINE | ID: mdl-34558120

ABSTRACT

Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Humans , Neuroglia/metabolism , Syndrome , TDP-43 Proteinopathies/pathology
20.
Alzheimers Dement ; 18(5): 942-954, 2022 05.
Article in English | MEDLINE | ID: mdl-34482642

ABSTRACT

The extracellular matrix (ECM) of the brain comprises unique glycan "sulfation codes" that influence neurological function. Perineuronal nets (PNNs) are chondroitin sulfate-glycosaminoglycan (CS-GAG) containing matrices that enmesh neural networks involved in memory and cognition, and loss of PNN matrices is reported in patients with neurocognitive and neuropsychiatric disorders including Alzheimer's disease (AD). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we show that patients with a clinical diagnosis of AD-related dementia undergo a re-coding of their PNN-associated CS-GAGs that correlates to Braak stage progression, hyperphosphorylated tau (p-tau) accumulation, and cognitive impairment. As these CS-GAG sulfation changes are detectable prior to the regional onset of classical AD pathology, they may contribute to the initiation and/or progression of the underlying degenerative processes and implicate the brain matrix sulfation code as a key player in the development of AD clinicopathology.


Subject(s)
Alzheimer Disease , Brain/physiology , Chromatography, Liquid , Extracellular Matrix/chemistry , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...